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Figure 1: Overview over our automatic 3D thumbnail generation pipeline. We simplify the geometry of the input mesh. We then parameterize
the simplified geometry in order to synthesize textures. These textures are then used to map original, high-resolution surface attributes onto
the 3D thumbnail. Finally, mesh data is converted into a compact delivery format. By comparing against image-based 3D previews, we
evaluate the applicability of this approach, with regards to file size and visual error, in the context of virtual object galleries on the Web.

Abstract

Virtual 3D object galleries on the Web nowadays often use real-
time, interactive 3D graphics. However, this does usually still not
hold for their preview images, sometimes referred to as thumbnails.
We provide a technical analysis on the applicability of so-called 3D
thumbnails within the context virtual 3D object galleries. Like a 2D
thumbnail for an image, a 3D thumbnail acts as a compact preview
for a real 3D model. In contrast to an image series, however, it en-
ables a wider variety of interaction methods and rendering effects.
By performing a case study, we show that such true 3D representa-
tions are, under certain circumstances, even able to outperform 2D
image series in terms of bandwidth consumption. We thus present a
complete pipeline for generating compact 3D thumbnails for given
meshes in a fully automatic fashion.

CR Categories: I.3.7 [Computer Graphics]: Color, shading, shad-
owing, and texture I.3.2 [Computer Graphics]: Distributed/network
graphics

Keywords: WebGL, Texture Mapping, Thumbnail, Compression,
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1 Introduction

Presenting a collection of 3D objects online has become a very
common use case for 3D Web technology. Popular examples in-
clude online shops, Web portals for 3D printing, or virtual muse-
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ums. Furthermore, the increasing popularity of low-cost digitiza-
tion devices raises demand for Web-based visualization of high-
resolution, scanned artifacts. To enable a fast overview over a
large collection of 3D objects, most applications employ so-called
thumbnails: like for image collections, small preview images pro-
vide a rough overview of the database content. Such a thumbnail
often consists of a single image. Moreover, some Web pages use an-
imated image series to create the illusion of a 3D rendering. When
connected to the user’s input, these image series can even be used
to mimic a true 3D viewer, which, however, offers only a limited
amount of freedom for navigation and interaction. Typically, inter-
action is limited to turntable-like rotations around the up-axis, for
instance. This is due to the fact that, in order to serve as a preview
(or: thumbnail), these image series should be able to be loaded very
fast, and hence they should not consume too much bandwidth.

Within this paper we investigate the possibility of using true 3D
representations as interactive previews for the content of 3D object
galleries on the Web. Our contributions can be summarized as fol-
lows:

• We present a fully automatic pipeline for converting a high-
resolution 3D model to a compact 3D representation, entitled
3D thumbnail.

• We evaluate the file size of 3D thumbnails against the file size
of comparable image series, answering the important question
if fast, true 3D previews are feasible in terms of bandwidth
consumption.

• We provide a brief discussion of the advantages and disadvan-
tages of both methods.

We limit our case study to a scenario where the thumbnails serve
as previews for the original, full-quality view onto the data. This
full-quality view is assumed to be a 3D visualization, realized via
WebGL or a comparable high-performance 3D graphics API for the
Web (such as Stage3D, for instance). One typical scenario could be,
for instance, an online exhibition of digitized artifacts, for example
from the domain of cultural heritage. While our experiments are



performed with the explicit use case of preview images for object
galleries in mind, we believe that our technical analysis is generally
interesting when it comes to the question whether a full 3D viewer
should be used for a given application, or not.

2 Previous Work

Mesh Simplification and Detail Preservation. A wide variety
of techniques have been proposed to reduce the complexity of a
3D mesh, while approximating its original shape or appearance as
closely as possible. The most popular one is probably the quadric-
based edge collapse technique proposed by Garland and Heck-
bert [Garland and Heckbert 1997]. Cignoni et al. have shown how
the surface details of a mesh can be preserved on a simplified ver-
sion by encoding them in textures [Cignoni et al. 1999]. They pro-
pose to adopt the texture sampling density based on an estimated
screen-space footprint of the rendered object. However, the pro-
posed texture parameterization method includes many discontinu-
ities, and is not optimized with regards to any metric. Sander et al.
have improved the approach of Cignoni et al. by showing that a
normal-shooting approach can produce better approximations than
closest-point sampling [Sander et al. 2000]. The method relies on a
good parameterization of the simplified mesh.
One popular approach for parameterizing a mesh (also available in
the open-source modeling tool Blender, for example) is the Least-
Squares Conformal Maps (LSCM) method. [Lévy et al. 2002]. It
provides a least-squares approximation of a parameterization that
preserves local angles within the mesh. Angle-based flattening is
another method that aims to achieve a conformal mapping [Sheffer
and de Sturler 2001]. There are other parameterizations methods
that optimize by different criteria, such as geometric stretch or sig-
nal stretch [Sander et al. 2001; Tewari et al. 2004]. The interested
reader is referred to the survey of mesh parameterization methods
presented by Hormann et. al. [Hormann et al. 2007].
An alternative approach was presented by Cohen et al. [Cohen et al.
1998]. Their approach was to limit the allowed texture distortion of
a textured high-resolution mesh during simplification. Within the
context of 3D thumbnail generation, an interesting property of their
approach is the ability to measure the deviation of the simplified
version of the mesh in screen space, given a specific display reso-
lution.
In general, our concept of a 3D thumbnail is closely related to the
idea of using a coarse Level-of-Detail representation (see [Luebke
et al. 2002] for an introduction), obtained via mesh simplification.
However, the special property of a 3D thumbnail is that it is opti-
mized for a specific target viewport size, and that the file size of the
compressed result should be as small as possible.

Thumbnails as Previews for 3D data bases. The term 3D
Thumbnail was introduced by Chiang et al.[Chiang et al. 2010; Chi-
ang and Kuo 2012]. They transform meshes into a low-dimensional
thumbnail-descriptor that captures the main features of the mesh.
From that, a 3D preview can be generated and rendered. These 3D
thumbnails differ from our 3D thumbnails, as we try to approximate
not only the shape, but the entire appearance (including surface de-
tails) in a 3D preview.
Besides mesh-based 3D representations, there are also image-based
approaches, using pre-rendered views of a 3D object, as well as
video-based methods. A recent introduction to these topics can be
found in the work of Lipski et al., for instance [Lipski et al. 2015].
As previews for today’s Web galleries, simple animated or inter-
active 2D image series, realized using JavaScript libraries such as
jQuery reel1, are still the most popular image-based method in use.

1http://test.vostrel.net/jquery.reel/example/index.html

The 3DNP (3D - No Plugins) technology by Thorsten Schlüter2 is
an open-source system to render and display 360-degree views of
3D objects inside a browser. These views are simply represented
as images, and interaction and navigation around the object is real-
ized via JavaScript. The viewer enables the user to rotate the model
around two different axes, and it is currently being used by the pop-
ular 3D printing portal Shapeways3.

Mesh Compression for the Web. Alliez and Gotsman, as well
as Peng et al., presented surveys on different mesh compression
methods [Alliez and Gotsman 2003; Peng et al. 2005]. Recently,
Maglo et al. have presented another state-of-the-art paper, focusing
on latest developments within the past decade [Maglo et al. 2015].
While most mesh compression techniques traditionally optimize
the rate-distortion ratio of the resulting compressed representation,
typical real-world formats for the Web rely on much simpler binary
formats, in order to allow for fast decoding [Limper et al. 2013]. A
popular method (for instance, used by the glTF format, as proposed
by the Khronos group4) is to send binary buffers, which can then
directly be uploaded to the GPU (cp. also [Behr et al. 2012; Limper
et al. 2014; Sutter et al. 2014]).

3 3D Thumbnails

Within this paper, we define a 3D Thumbnail as a true 3D preview
representation for the original mesh, which is significantly smaller
in file size than the original model. Moreover, it is specifically de-
signed for being displayed within a viewport of a fixed, small size.
This way, a 3D thumbnail serves a similar purpose as a 2D im-
age thumbnail: to be loaded much faster, and at the same time, to
provide the best possible insight about the large-scale structure of
the original object. One could also state that the simplified ver-
sion should be visually as close as possible to the original mesh, by
preserving overall shape, texture and surface details, given a fixed
threshold for the resulting file size.
A common method to meet the goal of an optimum approximation,
using a given file size budget, is the use of textures for representing
surface signals (cp., e.g., [Cohen et al. 1998; Cignoni et al. 1999]).
Those textures are applied to a geometrically simplified version of
the original mesh. In the following, we describe our pipeline for
generating a 3D thumbnail, which follows this general concept. A
schematic overview is also shown in Fig. 1.

3.1 Mesh Simplification

In order to decrease the size of a 3D model to a level that can be used
for a 3D thumbnail, the geometry must be simplified aggressively.
The simplification has to be performed once, during a preprocess-
ing step, and the mesh is simplified to a very low number of vertices
(cp. Table 1). Because of this, we chose good shape approxima-
tion over simplification speed. We used the OpenMesh5 library’s
implementation of the quadric edge-collapse algorithm [Garland
and Heckbert 1997], while forbidding the orientation of faces to
be flipped.
The target number of vertices, required for a simplified mesh to re-
semble the shape of the original one closely enough, depends on the
original’s shape. Also, the notion of closely enough may be subject
to the viewer’s opinion. Ideally, the number of vertices of the sim-
plified mesh is determined by an error threshold, either in screen
space or in 3D object space.

2http://www.thoro.de/page/3dnp-introduction-en
3http://www.shapeways.com
4http://gltf.gl/
5http://www.openmesh.org



3.2 Mesh Parameterization

We encode surface details (in our test setup: diffuse color and nor-
mals) of an original 3D model in 2D textures. Thus, the simpli-
fied mesh needs a parameterization. Even if the original model is
parameterized and textured, we cannot reuse any textures because
the simplification would result in a very distorted parameterization.
Furthermore, many high-resolution models are not parameterized
and only have per-vertex colors and normals, for example.

Cutting In order to generate a contiguous 2D parameterization of
a simplified mesh, some edges have to be cut apart such that the
topology of the mesh meets the requirements of the used param-
eterization method. In our case, we need the mesh to be of disk
topology, since we chose the LSCM algorithm for parameterizing
it. We can then segment the mesh first and build a texture atlas af-
terwards.
To achieve this, we used a simpler variant of the segmentation algo-
rithm presented by Lévy et al. [Lévy et al. 2002]. First we find the
5% of edges with the largest dihedral angle and mark them as fea-
tures. Then, we compute the minimal distance to any feature edge
or boundary edge for each vertex, edge and face. Beginning from
the local maxima of these distances, we grow segments by itera-
tively adding triangles at the segment boundaries. Finally, we sep-
arate the segments by cutting the mesh at the segment boundaries,
resulting in multiple segments which are each of disk topology.
The advantage of such a segmentation over cutting the mesh until it
has the required topology is that the parameterization can be done
for each segment in parallel. Furthermore, smaller segments are
more likely to be parameterized without overlapping themselves,
which would require further processing.

Parameterization During this step, we map every segment of the
simplified 3D mesh onto a planar (2D) domain. In principle, any
parameterization algorithm could be used here, we decided to use
the LSCM algorithm. An alternative parameterization could, for ex-
ample, be angle-based flattening [Sheffer and de Sturler 2001]. The
resulting parameterizations for all segments must be scaled in tex-
ture space, such that their relative size in texture space corresponds
to their relative surface area in 3D object space. This ensures a
consistent level of texture detail across all segments.

Packing We create a texture atlas from the parameterizations of
all segments by packing them into a square. This is done with a
simple packing algorithm based on bounding boxes. The drawback
of this approach is the amount of unused texture space inside these
boxes. Therefore, more elaborate packing algorithms have the po-
tential to increase the texture utilization significantly. One example
for such an algorithm would be the packing algorithm that was in-
troduced by the authors of the LSCM method [Lévy et al. 2002].
A more recent alternative would be the approach that was taken by
Nöll and Stricker, where the parameterizations are packed under the
assumption that texture content is repeated during sampling [Nöll
and Stricker 2011].

3.3 Texture Synthesis

At this stage of the pipeline, we transfer the surface attributes (dif-
fuse color, normals) to textures. In order to do so, a mapping must
be established between the simplified mesh and the original mesh.
A naive mapping would be a nearest-point mapping. However, it
has been shown that visually better results can be obtained by a nor-
mal shooting approach (see [Sander et al. 2000]), which we have
adapted. For every texel of a synthesized texture, the correspond-
ing point on the simplified mesh is determined. We then search, in

forward and backward direction, along a ray which originates from
this point, following the direction of the interpolated normal, to find
the closest point of the original mesh. We furthermore require that
the original mesh’s face intersected by the ray has the same ori-
entation as the corresponding face on the simplified mesh. Once
that intersection point is found, its interpolated surface attributes
are sampled and assigned to the texel. To reduce interpolation arti-
facts, we add a margin around all sampled texel regions, repeating
texture content from the borders of the respective islands.
For a given simplified mesh with a given parameterization, the ideal
resolution of the synthesized textures depends on the viewport res-
olution of the resulting 3D thumbnail

3.4 Conversion to a Delivery Format

Finally, the simplified mesh and the texture maps have to be
converted to a delivery format which is suited for the Web. In order
to yield the smallest possible file sizes, we have to compress the
geometry and textures. We also have to choose file formats that
can be natively decoded by Web browsers in order to keep loading
times to a minimum. Diffuse textures can be compressed lossily,
with little visual difference, as JPEG images. The normal textures,
however, cannot be easily stored as JPEG without a visible loss of
quality. Thus, we save them as PNG images.

Geometry is ideally stored in a binary format that is compact in
file size and, at the same time, not introducing any decoding over-
head. This aspect is especially crucial for 3D thumbnails, since
they already serve as previews, which means they should be loaded
as fast as possible. We have used X3DOM’s BinaryGeometry for-
mat [Behr et al. 2012]. The main reason for this was the fact that,
with the aopt tool, the InstantReality framework 6 already provides
a powerful tool for optimizing data for delivery on the Web, us-
ing X3DOM. Although the SRC format can also be written by
this tool, its compressed version can currently not be handled by
X3DOM, otherwise this would have been a more state-of-the-art al-
ternative [Limper et al. 2014]. Further interesting technologies that
provide compact delivery of 3D mesh data for the Web (but are not
available in X3DOM yet) are glTF7 and Blast [Sutter et al. 2014].
For generating the X3DOM Binary Geometry files, we have used a
compression setting that creates 16 bit vertex positions and texture
coordinates. The resulting binary files have then been zipped for
delivery.

4 Comparison with 2D image series

To evaluate the performance of a 3D thumbnail, we have created a
test setup where an animated series of 2D images serves as a com-
parison. Like for a 3D thumbnail, the main aim of such an image
series is to provide the user with an impression about the overall
3D structure of the object, by showing views onto the object from
different angles.

A great advantage of 2D image series, which is worth to be noted
at this point, is that one can basically display objects at any degree
of realism, without any significant difference in application perfor-
mance. The images could, for example, show photographs, or high-
quality path-traced renderings. However, we have focused our ex-
periments on a use case where the full-resolution view onto the data
is realized as a real-time 3D visualization (e.g., based on WebGL).
Therefore, we found it a natural assumption that the image-based
previews should also be generated using the same rendering tech-

6http://www.instantreality.org
7https://github.com/KhronosGroup/glTF



Figure 2: Test Web page, showing previews for our test models
(here: image series, both versions of the Web page are available
for testing as part of the supplemental material). From top left to
bottom right: Angel, Elephant, Dragon, Nofretete, Cruciform, Bee,
Thai Statue, Lucy, Santa.

Scene Original Simplified
#vertices #tris #vertices #tris

Angel 500,355 1,000,000 588 688
Elephant 115,318 230,636 2,337 2,994
Dragon 125,000 250,000 1,526 1,972
Nofretete 220,474 440,297 684 786
Cruciform 192,183 284,361 510 563
Bee 8,473,793 16,946,880 4,099 5,294
Thai Statue 4,999,996 1,000,000 2,579 3,008
Lucy 14,027,872 28,055,742 1,219 1,318
Santa 75,781 151,558 856 996

Table 1: Test models used for our experiments.

niques, so that the user’s first impression gets as close as possible
to the original, full-resolution view.

4.1 Test Setup

To perform a comparison between 2D image series and 3D thumb-
nails, in terms of file size as well as of preview quality, we have first
selected several scanned meshes as test cases. An example Web
page, showing a gallery with preview images for all of our nine test
models, is shown in Fig. 2. As can be seen in Table 1, our test mod-
els include very small meshes, as well as gigantic ones, consisting
of many millions of primitives. Furthermore, we used meshes with
very simple geometry, such as the Nofretete bust, as well as meshes
with highly complex geometric structures, such as the eulaema bee.
For the meshes that didn’t have any colors, we created grayscale
ambient occlusion maps instead.

Figure 3 gives an overview of how our test setup is organized. Af-
ter creating the 3D thumbnail representations, we render them from
different points of view, in a similar way how the image series are

3D Asset
(Full Resolution)

3D Thumbnail

Process Mesh
&

Generate Textures

Render
Views

Image Set
(Full-Resolution Asset)

Image Set
(3D Thumbnail)

Render
Views

Web App

Compress
(X3DOM Format)

Compress
(JPEG)

Web
App

Error Assessment

Figure 3: Test setup used for our experiments. On the one hand,
3D assets are simplified and parameterized to store surface details
in textures, which leads to true 3D thumbnail representations. On
the other hand, we create image series by rendering the asset from
different views. To compare the quality of both approaches, we cre-
ate an image series using the 3D thumbnail and compute the mean
square error over the resulting images.

created from the full-resolution models. Since both approaches
should serve as previews of a Web-based real-time rendering of
their full-resolution versions, we have used X3DOM to generate
the image sets. By using X3DOMs getScreenshot function, and by
programatically triggering a click onto an HTML anchor element,
downloading all rendered views of a particular object was easily
possible. The rendered views are, in both cases, stored in a loss-
less format (PNG) and then compared to estimate a mean square
error over all pixels, for each view onto each model (see Table 4).
To avoid aliasing artifacts inside the image series, occuring with
small viewports and high-resolution mesh data, the image series
have been rendered using a larger viewport (800× 800 pixels) and
then sampled down to their final resolution (200× 200 pixels).

4.2 Deciding over Variable Testing Parameters

Having decided to use previews of 200 × 200 pixels for all of our
nine test meshes for our experiments, there were still a couple of
test parameters left, which had to be configured. In the following,
we briefly summarize how we decided about the most important
parameters within the test setup.

Image Formats. To provide a fair comparison of the resulting file
sizes of both approaches (see Table 3), we have converted the im-
age series to JPEG format, using ImageMagick’s mogrify tool with
a 90% quality setting. Similarly, we have stored the diffuse color
texture of each 3D thumbnail as a JPEG image, using the same
quality setting as for the image series. Normal maps, however, can-
not be compressed as JPEG images without accepting a significant
loss of quality. We therefore stored all of the normal maps using
the loss-free PNG format.



Scene #images
(360 deg. rotation) resolution

reel: Phone 10 200 × 200
reel: Vase 12 210 × 186
reel: Car 2 20 200 × 200
reel: Teapot 24 160 × 120
reel: Car 1 35 276 × 126
reel: Arrow 36 130 × 60
WebRotate 360: Shoe 36 400 × 264
YouSpin: Gun 70 569 × 491
3DNP: FRITZ!Box 252 300 × 300

Table 2: Resolution (pixels) and number of images per image series
for some turntable-like 360 degree preview examples from the Web.

Number of Images per Image Series. When comparing a 3D
thumbnail with an image series in terms of interactivity and file
size, a crucial question is: What is the typical number of images in
such a case? To answer this question, we have considered multiple
examples from the Web, which are shown in Table 2. Some num-
bers are taken from the public demo page of the popular jQuery
reel JavaScript library for animated image series, as well as from
the public company pages of Web Rotate 3608 and YouSpin9, and
from the 3DNP demo page.
As can be seen from Table 2, typical numbers vary between 10 and
252, while the large value of 70 seems to be an outlier and only
occurs for the high-quality YouSpin Gun demo, using a large size
of 569 × 491 pixels, and showing only one object on the entire
page. The 3DNP demo uses significantly more images than the
other ones, since it also provides the user with an additional degree
of freedom for interaction. However, the large amount of images
leads to an overall file size of over 2 MB. Therefore it is already
significantly larger than the other examples, and also larger than all
of our 3D thumbnails, hence we limited ourselves to a more mean-
ingful comparison against turntable-like image series with one de-
gree of freedom. At least from the examples we considered, values
within a range of 10 to 35 seemed to be typical for 200 × 200 pixel
viewports, therefore we have used configurations with 8, 16 and 32
images, for each of our test models, throughout our experiments.

Amount of Mesh Simplification. When simplifying the original
meshes for generating 3D thumbnails, the question arises to which
amount this simplification should be performed. Ideally, we would
use a method that takes the visible error on the image plane into ac-
count, since we already know the resolution of the target viewport
for our 3D thumbnails.
However, in our prototypical pipeline, we have simply picked this
resolution for our nine test meshes manually. Compared to Cohen
et al. (see [Cohen et al. 1998]), we have used an orthogonal ap-
proach: instead of deciding about a visual error, and letting this
error determine the final file size, we have simplified all meshes un-
til the resulting 3D thumbnail representations were of a size that is
comparable to the size of the corresponding image series. With this
fixed mesh sizes, we have then assessed the visual error. Table 1
shows an overview of the amount of triangles and vertices for the
simplified meshes.

Texture Resolution. One critical parameter, with regards to the
resulting file sizes of the 3D thumbnails, is texture resolution (cp.
Fig. 4). We therefore had to decide about the texture resolutions
that should be used for normal maps and diffuse textures. In the
case of 3D thumbnails, where the size of the target viewport can as-

8http://www.webrotate360.com/360-product-viewer.html
9http://www.youspin.co/youspin/demo/360-spin/
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Figure 4: This graph shows by example how the file sizes of a 3D
thumbnail are composed of the geometry files (X3DOM BinaryGe-
ometry), the diffuse texture (JPEG) and the normal texture (PNG).
The size of the normal texture becomes more significant as the size
of the geometry decreases, but it is the largest part in all of the three
cases. This bottleneck becomes even more apparent when texture
size increases.

sumed to be known, we can choose our texture size according to the
viewport dimensions. In an ideal case, where the texture parame-
terization is assumed to be regular, without significant stretch along
the 3D surface, and where we assume to look at a flat surface with
a projected size that is equal to the viewport dimensions, the ideal
texture resolution is identical to the viewport size. Since the size of
our previews is known to be 200 × 200 pixels, and assuming that
users will only zoom into the scene to a limited amount, we identi-
fied textures at resolutions of 128 × 128 pixels, 256 × 256 pixels,
and 512 × 512 pixels as a suitable set of candidate configurations.

4.3 Comparing File Sizes

Table 3 shows an overview of the resulting file sizes, using different
numbers of images for the image series, and different texture reso-
lutions for the 3D thumbnails. As can be seen, both representations
produce files within a comparable range of size. For each of the test
meshes, the 3D thumbnail representations become even larger than
the image series with 32 images, as soon as a texture of 512× 512
pixels is used. This is due to the fact that bandwidth consumption
of the texture images, especially for the normal map, is usually the
dominant factor for the 3D thumbnails, as can also be seen in Fig. 4:
even for the rather complex Bee mesh, the normal texture already
consumes more bandwidth than the compressed geometry.

For the image series, the elephant mesh produces the largest file
sizes. We think that one of the most important reasons why the im-
age series of the elephant mesh consumes so much space is the fact
that the rendered, centered elephant mesh covers large parts of the
viewport, from all possible angles. In contrast, the thin, elongated
dragon model has a much smaller average screenspace footprint,
and hence there is less information in the overall image, which in
turn leads to significantly smaller file sizes.

4.4 Comparing Visual Quality

Besides the pure file size, an important criterion for assessing the
quality of 3D thumbnails is the visual error that is introduced by
simplifying the original data. To measure the approximation qual-



Model 8 images 16 images 32 images 3D thumbnail (1282) 3D thumbnail (2562) 3D thumbnail (5122)
Angel 34.4 68.9 138.0 35.6 90.3 262.8
Elephant 55.0 110.3 221.0 67.1 133.6 359.9
Dragon 28.1 57.0 114.1 55.4 127.3 363.4
Nofretete 43.9 88.1 176.0 37.7 96.2 281.8
Cruciform 30.1 61.0 121.9 32.8 85.2 253.4
Bee 35.2 70.8 141.0 96.1 177.5 456.6
Thai Statue 36.5 72.9 145.8 71.6 157.1 455.5
Lucy 31.5 63.5 127.0 50.1 123.4 368.4
Santa 36.6 74.0 147.7 40.1 97 288.3

Table 3: File size (in KB) of the image series and 3D thumbnail representations (including geometry and textures) for our test models. For the
3D thumbnails, texture sizes are indicated in brackets. The largest and smallest value for each of both categories, images and 3D thumbnails,
are printed in bold type.

Model 128× 128 256× 256 512× 512
Angel 5.55 5.28 5.11
Cruciform 4.70 4.40 4.32
Dragon 7.06 6.54 6.11
Elephant 10.58 10.44 10.35
Nofretete 4.96 3.96 3.45
Bee 40.7 33.7 25.1
Thai Statue 39.9 31.1 23.4
Lucy 34.4 29.8 22.6
Santa 10.17 10.15 10.13

Table 4: Mean square error, multiplied by 104 for readability, for
different texture resolutions. The error was averaged over 32 views
of each model.

ity of the 3D thumbnails, we have rendered them from 32 different
points of view, in a similar fashion as for the creation of the image
series (cp. Fig. 3). We have then, for each model and texture reso-
lution, computed the mean square error (MSE) over all pixels of the
32 views. Our results are summarized in Table 4. As can be seen in
the table, increasing the texture resolution always reduced the error.
However, the magnitude of this decrease was not similar for all test
models. The geometrically rather simple Nofretete bust, for exam-
ple, showed a higher sensitivity to varying texture resolution than
the more complex elephant mesh.
An interesting finding is that the variation of the MSE between the
different meshes is far more significant than its variation among
different versions of the same mesh at varying texture resolutions.
There might be two different reasons for this: first the geometric
simplification, and second the texture parameterization. The LSCM
algorithm which we used only optimizes the conformality criterion,
and it may demand post-processing with an optimization that takes
into account geometric stretch or signal stretch [Lévy et al. 2002;
Sander et al. 2001; Tewari et al. 2004]. We therefore believe that
an ideal Thumbnail generation algorithm would take both into ac-
count, geometric simplification and distortion of attribute textures
(cp. [Cohen et al. 1998]).

The error introduced by the texture resolution, as well as by pa-
rameterization and geometric simplification is visualized for the
Nofretete bust in Fig. 5. The largest errors occur at the silhouette,
due to the geometric simplification, as well as in regions of high
texture detail.

4.5 Comparing User Experience

Finally, an important question remains: how different is the user
experience for both approaches? To provide an optimum answer to
this question, an extensive user study would need to be conducted.

While this is out of the scope of this paper, we have investigated
different ways of interacting with the 3D thumbnails, as can also be
seen in the accompanying video and demo application: the user can
navigate around the model, using X3DOMs Turntable navigation
mode. Besides smooth rotation around arbitrary axes, zooming is
also possible. Furthermore, the user can switch between the stan-
dard rendering mode and two others. The first additional rendering
mode uses a uniform white base color for the shaded surface, in-
stead of using the diffuse texture. The other one directly visualizes
the normal map, which allows for a better inspection of small-scale
surface structures. Clearly, more interaction possibilities can be
imagined, such as moving the position of the light source with the
mouse.

At this point, we can state that 3D thumbnails offer significantly
more interaction possibilities than 2D image series of a comparable
file size.

5 Conclusion

The results of our case study highlight different constraints, regard-
ing the use of 3D thumbnails. Reasons for preferring 2D image
series as previews, rather than using 3D thumbnails, can be sum-
marized as follows:

• In contrast to real-time 3D renderings, generated inside the
client’s browser, 2D images have the advantage that they can
display an object at any degree of realism.

• Especially when a low number of images is used, image series
are more compact than 3D thumbnails.

• 2D images are independent from the geometric complexity of
the object, while 3D thumbnails require a high vertex budget
and sophisticated parameterization methods for objects with
complex shape and topology.

• 2D images are comparably easy to generate, while generating
a 3D thumbnail requires the application of several advanced
mesh processing techniques.

For many common applications, these constraints do not apply. One
example application is given as part of the supplemental material,
and also shown in the corresponding video of this paper. In general,
reasons for preferring 3D thumbnails over 2D image series are the
following:

• 3D thumbnails provide the user with a lot of interaction pos-
sibilities. Besides smooth rotations and zooming, rendering
effects, such as changes in lighting or switching between dif-
ferent rendering modes, can be realized.



Figure 5: Visual comparison of two 200× 200 pixel views. Left: Full-resolution mesh (440,297 triangles, vertex colors). Center: Simplified
3D thumbnail with 256×256 pixel texture (786 triangles). Right image: squared difference, multiplied by factor 8 for visualization purposes.
Typical artifacts occur at the silhouette, due to reduced geometric fidelity, or at regions of fine texture detail, due to the small texture resolution.

• For objects with simple shape and topology, 3D thumbnails
provide great previews, even with low vertex budget.

• When smooth interaction (or interaction along multiple de-
grees of freedom) is required, 3D thumbnails are generally
more compact than 2D image series.

Besides the already mentioned 3D galleries for the exhibition of
digitized artifacts, other areas of application exist. In general, a 3D
thumbnail can be used in every case where previews of a small,
fixed size are employed. One use case that is potentially located
outside the Web could, for instance, be a shop or inventory window
in a game, where small 3D elements serve as previews for the actual
3D views onto different items. Such items could have been origi-
nally created by an artist as high-resolution meshes, for example by
using sculpt tools. Due to the wide variety of possible use cases,
and due to the general nature of the problem of creating compact
3D representations, our proposed 3D thumbnail generation pipeline
can also be used for general 3D asset optimization.

Future Work includes several important improvements to the pro-
posed pipeline. First, we need to use an expressive error mea-
sure for simplification, instead of manually deciding over the target
number of vertices. Second, the texture size for the normal maps
is the dominant factor for the overall size for a 3D thumbnail, and,
at the same time, the texture quality is massively determined by
the texture parameterization. We therefore believe that using more
sophisticated algorithms for mesh segmentation, parameterization
and packing are keys to better quality of the results. The use of
algorithms for normal map compression also seems promising to
mitigate this problem.

Besides such technical contributions to the asset optimization
pipeline, an important task for future research is the investigation
of usability of 3D thumbnails, compared to other representations,
such as 2D image series. This will require extensive user studies,
as well as a full exploration of the potentials offered by the different
preview methods. Part of such studies will also be a more sophisti-
cated assessment of perceived visual quality of the previews, since
the mean square error can not always be expected to be a good mea-
sure of what humans perceive as visual errors.

Finally, combining the advantages of both approaches also seems an
interesting direction for future research. For example, transmitting
an image series with G-Buffers instead of final renderings could be
an interesting approach for achieving real-time rendering effects,
such as dynamic changes of material and lighting.
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LIMPER, M., THÖNER, M., BEHR, J., AND FELLNER, D. W.
2014. Src - a streamable format for generalized web-based 3d
data transmission. In Proc. Web3D, 35–43.

LIPSKI, C., HILSMANN, A., DACHSBACHER, C., AND EISE-
MANN, M. 2015. Image- and video-based rendering. In Digi-
tal Representations of the Real World: How to Capture, Model,
and Render Visual Reality, M. Magnor, O. Grau, O. Sorkine-
Hornung, and C. Theobalt, Eds. CRC Press, Apr., 261–280.

LUEBKE, D., WATSON, B., COHEN, J. D., REDDY, M., AND
VARSHNEY, A. 2002. Level of Detail for 3D Graphics. Elsevier
Science Inc.
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